Generalized second-order parametric optimality conditions in semiinfinite discrete minmax fractional programming and second order (F

نویسندگان

  • Ram U. Verma
  • G. J. Zalmai
چکیده

This paper deals with mainly establishing numerous sets of generalized second-order parametric sufficient optimality conditions for a semiinfinite discrete minmax fractional programming problem, while the results on semiinfinite discrete minmax fractional programming problem are achieved based on some partitioning schemes under various types of generalized second-order (F ,β, φ, ρ, θ, m)-univexity assumptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality Conditions and Duality in Minmax Fractional Programming, Part I: Necessary and Sufficient Optimality Conditions

The purpose of this paper is to develop a fairly large number of sets of global parametric sufficient optimality conditions under various generalized (F, b, φ, ρ, θ)univexity assumptions for a continuous minmax fractional programming problem involving arbitrary norms.

متن کامل

Second order duality for minmax fractional programming

In the present paper, two types of second order dual models are formulated for a minmax fractional programming problem. The concept of η-bonvexity/ generalized η-bonvexity is adopted in order to discuss weak, strong and strict converse duality theorems.

متن کامل

A necessary condition for multiple objective fractional programming

In this paper, we establish a proof for  a  necessary condition for  multiple objective fractional programming. In order to derive the set of necessary conditions, we employ an equivalent parametric problem. Also, we  present the related semi parametric model.

متن کامل

Generalized (, b, ϕ, ρ, θ)-univex n-set functions and global parametric sufficient optimality conditions in minmax fractional subset programming

where An is the n-fold product of the σ-algebra A of subsets of a given set X , Fi, Gi, i∈ p ≡ {1,2, . . . , p}, and Hj , j ∈ q, are real-valued functions defined on An, and for each i∈ p, Gi(S) > 0 for all S∈An such that Hj(S) ≤ 0, j ∈ q. Optimization problems of this type in which the functions Fi, Gi, i∈ p, and Hj , j ∈ q, are defined on a subset of Rn (n-dimensional Euclidean space) are cal...

متن کامل

Duality Models for Some Nonclassical Problems in the Calculus of Variations

Parametric and nonparametric necessary and sufficient optimality conditions are established for a class of nonconvex variational problems with generalized fractional objective functions and nonlinear inequality constraints containing arbitrary norms. Based on these optimality criteria, ten parametric and parameterfree dual problems are constructed and appropriate duality theorems are proved. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016